70 research outputs found

    Automatic techniques for detecting and exploiting symmetry in model checking

    Get PDF
    The application of model checking is limited due to the state-space explosion problem – as the number of components represented by a model increase, the worst case size of the associated state-space grows exponentially. Current techniques can handle limited kinds of symmetry, e.g. full symmetry between identical components in a concurrent system. They avoid the problem of automatic symmetry detection by requiring the user to specify the presence of symmetry in a model (explicitly, or by annotating the associated specification using additional language keywords), or by restricting the input language of a model checker so that only symmetric systems can be specified. Additionally, computing unique representatives for each symmetric equivalence class is easy for these limited kinds of symmetry. We present a theoretical framework for symmetry reduction which can be applied to explicit state model checking. The framework includes techniques for automatic symmetry detection using computational group theory, which can be applied with no additional user input. These techniques detect structural symmetries induced by the topology of a concurrent system, so our framework includes exact and approximate techniques to efficiently exploit arbitrary symmetry groups which may arise in this way. These techniques are also based on computational group theoretic methods. We prove that our framework is logically sound, and demonstrate its general applicability to explicit state model checking. By providing a new symmetry reduction package for the SPIN model checker, we show that our framework can be feasibly implemented as part of a system which is widely used in both industry and academia. Through a study of SPIN users, we assess the usability of our automatic symmetry detection techniques in practice

    Automatic Verification of Data Race Freedom in Device Drivers

    Get PDF
    Device drivers are notoriously hard to develop and even harder to debug. They are typically prone to many serious issues such as data races. In this paper, we present static pair-wise lock set analysis, a novel sound verification technique for proving data race freedom in device drivers. Our approach not only avoids reasoning about thread interleavings, but also allows the reuse of existing successful sequential verification techniques

    Putting Randomized Compiler Testing into Production (Artifact)

    Get PDF
    This artifact accompanies our experience report for our compiler testing technology transfer project: taking the GraphicsFuzz research project on randomized metamorphic testing of graphics shader compilers, and building the necessary tooling around it to provide a highly automated process for improving the Khronos Vulkan Conformance Test Suite (CTS) with test cases that expose fuzzer-found compiler bugs, or that plug gaps in test coverage. The artifact consists of two Dockerfiles and associated files that can be used to build two Docker containers. The containers include our main tool for performing fuzzing: gfauto. The containers allow the user to fuzz SwiftShader, a software Vulkan implementation, finding 4 bugs. The user will also perform some line coverage analysis of SwiftShader using our tools to synthesize a small test that increases line coverage. Ubuntu, gfauto, SwiftShader, and other dependencies inside the Docker containers are fixed at specific versions, and all random seeds are set to specific values. Thus, all examples should reproduce faithfully on any machine

    Automatic Verification of Message-Based Device Drivers

    Full text link
    We develop a practical solution to the problem of automatic verification of the interface between device drivers and the OS. Our solution relies on a combination of improved driver architecture and verification tools. It supports drivers written in C and can be implemented in any existing OS, which sets it apart from previous proposals for verification-friendly drivers. Our Linux-based evaluation shows that this methodology amplifies the power of existing verification tools in detecting driver bugs, making it possible to verify properties beyond the reach of traditional techniques.Comment: In Proceedings SSV 2012, arXiv:1211.587

    Overhauling SC atomics in C11 and OpenCL

    Get PDF
    Despite the conceptual simplicity of sequential consistency (SC), the semantics of SC atomic operations and fences in the C11 and OpenCL memory models is subtle, leading to convoluted prose descriptions that translate to complex axiomatic formalisations. We conduct an overhaul of SC atomics in C11, reducing the associated axioms in both number and complexity. A consequence of our simplification is that the SC operations in an execution no longer need to be totally ordered. This relaxation enables, for the first time, efficient and exhaustive simulation of litmus tests that use SC atomics. We extend our improved C11 model to obtain the first rigorous memory model formalisation for OpenCL (which extends C11 with support for heterogeneous many-core programming). In the OpenCL setting, we refine the SC axioms still further to give a sensible semantics to SC operations that employ a ‘memory scope’ to restrict their visibility to specific threads. Our overhaul requires slight strengthenings of both the C11 and the OpenCL memory models, causing some behaviours to become disallowed. We argue that these strengthenings are natural, and that all of the formalised C11 and OpenCL compilation schemes of which we are aware (Power and x86 CPUs for C11, AMD GPUs for OpenCL) remain valid in our revised models. Using the HERD memory model simulator, we show that our overhaul leads to an exponential improvement in simulation time for C11 litmus tests compared with the original model, making exhaustive simulation competitive, time-wise, with the non-exhaustive CDSChecker tool

    Exact and approximate strategies for symmetry reduction in model checking.

    Get PDF
    Abstract. Symmetry reduction techniques can help to combat the state space explosion problem for model checking, but are restricted by the hard problem of determining equivalence of states during search. Consequently, existing symmetry reduction packages can only exploit full symmetry between system components, as checking the equivalence of states is straightforward in this special case. We present a framework for symmetry reduction with an arbitrary group of structural symmetries. By generalising existing techniques for efficiently exploiting symmetry, and introducing an approximate strategy for use with groups for which fast, exact strategies are not available, our approach allows for significant state-space reduction with minimal time overhead. We show how computational group theoretic techniques can be used to analyse the structure of a symmetry group so that an appropriate symmetry reduction strategy can be chosen, and we describe a symmetry reduction package for the SPIN model checker which interfaces with the computational algebra system GAP. Experimental results on a variety of Promela models illustrate the effectiveness of our methods

    Finding symmetry in models of concurrent systems by static channel diagram analysis

    Get PDF
    Over the last decade there has been much interest in exploiting symmetry to combat the state explosion problem in model checking. Although symmetry in a model often arises as a result of symmetry in the topology of the system being modelled, most model checkers which exploit structural symmetry are limited to topologies which exhibit total symmetries, such as stars and cliques. We define the static channel diagram of a concurrent, message passing program, and show that under certain restrictions there is a correspondence between symmetries of the static channel diagram of a program and symmetries of the Kripke structure associated with the program. This allows the detection, and potential exploitation, of structural symmetry in systems with arbitrary topologies. Our method of symmetry detection can handle mobile systems where channel references are passed on channels, resulting in a dynamic communication structure. We illustrate our results with an example using the Promela modelling language

    Automatic Test Case Reduction for OpenCL

    Get PDF
    ABSTRACT We report on an extension to the C-Reduce tool, for automatic reduction of C test cases, to handle OpenCL kernels. This enables an automated method for detecting bugs in OpenCL compilers, by generating large random kernels using the CLsmith generator, identifying kernels that yield result differences across OpenCL platforms and optimisation levels, and using our novel extension to C-Reduce to automatically reduce such kernels to minimal forms that can be filed as bug reports. A major part of our effort involved the design of ShadowKeeper, a new plugin for the Oclgrind simulator that provides accurate detection of accesses to uninitialised data. We present experimental results showing the effectiveness of our method for finding bugs in a number of OpenCL compilers
    • …
    corecore